backBack to 3/2015
General and Professional Education
3/2015 pp. 61-70

Testowanie oprogramowania: uzasadnienie potrzeby dydaktyki oraz tworzenia strategii testowania wykorzystując wnioski z teorii "no free lunch"

pdf Get full text pdf


The paper presents a mathematical justification of the problem of applying software testing for smaller class of problems. The No Free Lunch theory is shown, conclusions are drawn from this theory. The logic of software testing division is shown. Test optimization strategies to the problems already divided into equivalence classes are described. In the last chapter the educational impact of the article are discussed. The importantance of testing educational software is highlighted.

Key words

software testing, No Free Lunch theory, optimization strategies, equivalence classes


1. Alavi R., Lotfi S., The New Approach for Software Testing Using a Genetic Algorithm Based on Clustering Initial Test Instances, 2011 International Conference on Computer and SoftwareModeling.

2. Bieniawski S., Wolpert D. H., Rajnarayan D.,  Probability collectives in optimization, Encyclopedia of Stastistics, 2012.

3. Chen, Y., Zhong Y., Automatic path-oriented test data generation using a multipopulation genetic algorithm, the 4th International Conference on Natural Computation, 2008.

4. Coppit D., Dugan J.B., Sullivan K.J.,  Developing a Low-Cost High-Quality Software Toolfor Dynamic Fault-Tree Analysis, IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 1, MARCH 2000.

5. Ghiduk A. S., Automatic generation of basis test paths using variable length genetic algorithm, Elsevier B.V. 2014.

6. Ghiduk A.S, Automatic generation of object-oriented tests with a multistage based genetic algorithm, J. Comput., 2010.

7. Helmer G, Wong J., Slagell M., Honavar V., Miller L., Lutz., R.,  A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection System, 2002 Springer-Verlag London Limited.

8. Ho Y., Pepyne D. L., Simple Explantation of No Free Lunch Theorem of Optimization, IEEE, Conference on Decision and Control, Orlando, Florida USA, 2001,IPCSIT vol.14 (2011) © (2011) IACSIT Press, Singapore 225.

9. Pargas R. P., Harrold M. J., Peck R. R., Test-Data Generation Using Genetic Algorithms, Journal of Software Testing, Verification and Reliability, 1999.

10. Tai K., Lei Y., A Test Generation Strategy For Pair Wise Testing, IEEE Transactions on Software Enginiering, January 2002.