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Abstract: The authors present the advantages and disadvantages of introducing quantum elements of metal physics into 
the curriculum of engineering studies. On the one hand, the rapid development of new technologies forces future 
engineers to acquaint with the foundations of quantum theory of metals, but on the other hand, these theories use 
complex mathematical formalism, which requires additional hours in the physics program. What is more, not all 
quantum theories lead to correct results. This paper presents the foundations of two quantum theories that lead directly 
to analytical equations: free electron theory and Hartree-Fock theory. Then, using the theoretical equations, we calculate 
the bulk modulus of the metals and compare the obtained results with experiment. Then we analyze the causes of 
discrepancies occurring in both theories. 
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Introduction 
 
Discussions on the teaching of physics in technical 
colleges must essentially come down to search for 
answers to the question of how to educate the future 
engineer on the threshold of the twenty-first century. The 
development of such industries as materials’ science, 
microelectronics and optoelectronics, is the result both of 
the modernization of existing and construction of new 
industrial plants using the latest technology. This of 
course creates a demand for engineering staff capable of 
following the development of science and technology, as 
well as creative activities in industry. In addition, due to 
the inevitable process of integration of our country into 
the European Union the problem of adequate education 
of engineering cadres in the field of physics, as well as 
personnel able to meet the new challenges posed by 
modern science and technology take on particular 
importance. There is a necessity to remember and 
remind constantly that the development of technical 
sciences and a number of others is closely linked with 
the achievements of physics. It is precisely understood 
physics which enables graduates to understand the new 
technologies and the right attitude to them. 
Quantum physics science in school is certainly one of 
the most difficult challenges both for students and 
teachers [1]. The difficulty in understanding and 

teaching quantum physics, however, are a unique 
opportunity to show science as an integrated whole and a 
set of rules for carrying out accounts, which are often 
required in engineering and technology. All macroscopic 
properties and behavior of matter come directly from 
microscopic properties and behavior of the constituting 
particles, which can only be described with quantum 
physics. Therefore it is suggested that modern 
mechanical engineers must understand the fundamentals 
of quantum physics which is not understandable from 
everyday experience, moreover sometimes it even 
contradicts such experience [2]. But quantum physics is 
proved to be correct beyond reasonable doubt by an 
infinite number of experiments, and with time the 
validity of quantum physics was confirmed. The wide 
recognition of the relevance of quantum physics in 
current technologies, its role in science training and in 
the culture of science have enhanced research into new 
ways to present the subject in introductory physics 
courses. What is worse, the development of topical 
technologies is directly connected with physics of solids 
and thus the most sophisticated area of quantum physics. 
Thus the inclusion of applications of quantum mechanics 
to real although often simplified problems is not only 
important for the understanding of quantum physics, but 
will also motivate students to continue their studies in 
this subject [3]. On the other hand, one should keep in 
mind that attention paid only to mathematical 
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complexities makes loss to the real meaning of the 
phenomenon. Therefore, the problem of reducing more 
difficult concept into simpler terms becomes central to 
didactic reflection in quantum physics more than in any 
other topic.  
 
Mathematical models in physics 
 
In physics, the experimental results are given in the form 
of numbers and principles expressed mathematically. 
Mathematics is the language of physics therefore without 
the use of mathematics we are unable to describe 
physical phenomena [4]. Mathematics is an instrument in 
the research and is used to formulate mathematical 
models. When faced with a specific situation of physical 
physicist is trying to make its mathematical idealization 
or, as we say, simulation, preparing an idealized 
mathematical model of this situation, according to the 
following scheme in Fig. 1.  
Traditionally, it is assumed that the mathematical model 
is a consistent system of mathematical equations 

describing the analyzed phenomenon fulfilling the 
conditions laid down by Hadamard [5, 6]: 
- a solution exists, 
- the solution is unique, 
- the solution's behavior changes continuously with the 
initial conditions. 
In order to construct the model we need to distinguish 
certain measurable quantities typical for a given 
phenomenon that can be used for its verification. The 
fundamental theories according to which the model has 
been created should also be defined. The basic difficulty 
in formulating a proper model depends, on the one hand, 
on choosing the right one, that is measurable with 
physical parameters, and the other on the construction of 
understandable mathematical structures. In the case of 
physics of metals there are virtually only two models 
that comply with all the reservations above: 
- free electrons theory , 
- Hartree-Fock theory.  
 

 
 
 

 
 

Fig. 1. Scheme of mathematical models. 
 
 
The free electrons theory  
 
A free electron model is the simplest way to represent 
the electronic structure of metals. The theory was 
proposed in 1900 to describe and correlate the electrical 
and thermal properties of metals. Although, the free 
electron model is a great oversimplification of the 
reality, surprisingly in many cases it works pretty well, 
so that it is able to describe many important properties of 
metals. According to this model, the valence electrons of 
the atoms become conduction electrons and can travel 
freely throughout the crystal. Therefore, within this 
model we can neglect the interaction of conduction 
electrons with ions of the lattice and the interaction 
between the conduction electrons. In this sense we are 

talking about a free electron gas. However, there is a 
principle difference between the free electron gas and 
ordinary gas of molecules. Firstly, electrons are charged 
particles, so in order to maintain the charge neutrality of 
the whole crystal, we need to include positive ions. 
Secondly, the free electrons must comply with the Pauli 
exclusion principle, which leads to next important 
consequences.  
In this case the Schrödinger equation takes an extremely 
simple form: 
 

)()(
2

2
2

rEr
m




.   (1) 

It can be solved by elementary methods giving in result 
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and consequently the energy states of a single electron 
we obtain as: 
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Taking into account the Born-Karman boundary 
conditions: 
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we get that the components of the wave vector k must 
belong to the discrete set determined by equation: 
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In practical terms quantization (5) is used primarily to 
determine the density of states in k-space. As a result 
directly from (2) volume per one allowed state in the 
space k is: 
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Construction of N electron ground state comes down to 
filling the successive allowed states (3) with regard to 
the Pauli principle. Thus, for very large values of N 
region filled up by electrons in the k-space will 
correspond to a sphere of radius kF called the Fermi 
radius (Fig. 2). It is easy to show that: 

s
F nk 23 .    (7) 

where n means the electron density.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The Fermi radius kF . 
 
This means that the Fermi radius has a purely geometric 
interpretation, namely the radius of the sphere in the 

spatial space that separates the occupied states from the 
free ones. The free electrons theory created the basic 
concepts used in the physics of metals, such as the 
above-mentioned Fermi radius, the corresponding energy 
called Fermi energy, next temperature and Fermi sphere, 
whose appointment was for many years the main 
problem for any theory of metals. Moreover, the theory 
of free electrons can calculate the total energy of the N 
electrons ground state. For this purpose, we need to sum 
the energies of all single-electron levels lying inside the 
Fermi sphere: 
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where factor 2 before the sum is the result of two spins 
per each value of k. By converting the sum into integral 
we get the energy density of the electron gas in form: 

2

2

10 m

k

V

E S
F

 .    (9) 

Knowing the energy of the ground state, we can use all 
the thermodynamic relations and determine the pressure 
of the electron gas: 
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as well as the bulk modulus defined as: 
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Therefore having regard to relation (9) we obtain an 
equation allowing us to directly calculate the bulk 
modulus: 
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Of course, it can be assumed that these values will not 
always be precise, but any opportunity to connect the 
quantum world to the real one is always attractive for 
many reasons. 
 
Hartree Fock theory  
 
Hartree Fock [7] theory is one of the simplest 
approximate theories for solving the many-body 
Hamiltonian. It is based on a straightforward 
approximation to the true many-body wave function: that 
the wave function is given by a single Slater determinant 
of N spin-orbitals: 
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As long as we are content to consider molecules near 
their equilibrium geometry, Hartree-Fock theory often 
provides a good starting point for more elaborate 
theoretical methods which are better approximations to 
the electronic Schrödinger equation (e.g., many-body 
perturbation theory, single-reference configuration 
interaction). 
It is always important to remember the context of a 
theory. Hartree-Fock theory was developed to solve the 
electronic Schrödinger equation that results from the 
time-independent Schrödinger equation after invoking 
the Born-Oppenheimer [7, 8] approximation. Again, the 
Hartree-Fock method seeks to approximately solve the 
electronic Schrödinger equation, and it assumes that the 
wave function can be approximated by a single Slater 
determinant made up of one spin orbital per electron. 
Since the energy expression is symmetric, the variational 
theorem holds, and so we know that the Slater 
determinant with the lowest energy is as close as we can 
get to the true wave function for the assumed functional 
form of a single Slater determinant. The Hartree-Fock 
method determines the set of spin orbitals which 
minimize the energy and give us this best single 
determinant. 
The proper choice of the potential V(r) appearing in the 
one-electron Schrödinger equation is a subtle problem 
with basic question of how to represent the effects of 
electron-electron interactions best. From a fundamental 
point of view the Schrödinger equation should take into 
consideration both the electrons interactions 
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and potentials of the ions 
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So as a consequence any calculation of the electronic 
properties of a metal should start with the Schrödinger 
equation for the N – particle wave function of all N 
electrons in the metal, including explicitly the 
dependence of wave function on the position, as well as 
the electron spin: 

 




 














 ji ji

N

i R i
i

E
rr

e

Rr
Ze

m
H





ˆ
2

1

1

2
ˆ

2

22
2

.      (15) 

Treating the remaining electrons as a smooth distribution 
of negative charge with charge density ρ, we can present 
the potential energy of the given electron in this field as: 
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what leads directly to the set of one-electron equations 
known as the Hartree equations for each occupied one – 
electron level: 
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These nonlinear equations are solved by iteration until 
the procedure does not essentially change the potential. 
The antisymmetry requirement due to Pauli principle 
demands replacing the wave functions – solutions of 
equations (17) by a Slater determinant of one- electron 
wave functions. As a result we obtain set of Hartree-
Fock equations: 
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here 
jsis  results from including the dependence of 

wave function on the electron spin. 
These equations differ from the Hartree equations (17) 
by an additional term: 
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known as the exchange term. Like Vel  (16) it is 
nonlinear in Ψ and what is worth emphasize it is not in 
the typical form V(r)Ψ(r) but has the structure of integral 
operator: 
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what made the Hartree-Fock equations difficult to solve 
except for the case of free electrons when they can be 
solved exactly by means of a set of orthonormal plane 
waves. Solution of the equations (18) leads to energy of 
an electron at the level k in the form: 
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As in the case of the free electron theory we can 
calculate the total energy of the N electrons ground state, 
so integrating eq. 21 we obtain: 
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Taking into account relation (7) we obtain: 
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This means that in this case the energy density like in 
TES is only function of the electron gas density n. 
Therefore, using the equation (11) we can express the 
bulk density B in form  
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Calculation of the bulk modulus and comparison 
with experimental results 
 
On the basis of equations (11a) and (24) we are able to 
calculate the bulk modulus for any metals. The results 
obtained directly from these equations for alkali metals 
are presented Fig. 3. 

Apparently, for alkali metals, we observe high 
compatibility of experimental results with values derived 
directly from equations (11a) and (24). But according to 
H-F theory, the bulk modules obtained from equation 
(24) receive negative values for metals with electron gas 

density 221088,5 n  cm-3 – as alkali metals (Fig. 4). 
Therefore in the Fig. 5 the absolute values are shown.   
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Fig. 3. Bulk modulus for alkali metals –comparison between experimental values (red) and free electrons theory values (blue), 

obtained from eq. (11a). 
 

Li Na K Rb Cs
0

5

10

15

20

25

B
 [
G

P
a
]

metal  
Fig. 4. Bulk modulus for alkali metals – comparison between experimental values (red) and H-F theory values (green), obtained from 

eq. (24). 
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Fig. 5. Bulk modulus in dependence on electron gas density in terms of H-F theory, eq. (24). 
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This fact put the results of the H-F theory for this group 
of metals into justified doubt. There is, however, a 
significant group of metals for which one or the other 
theory leads to quite correct results. Figure 6 shows the 
metals for which the correct results give the theory of 

free electrons, while in graph 7 the theory of H-F. And, 
in contrast, Figures 8 and 9 show bulk modulus for 
metals where the difference between experimental and 
theoretical values is significant.  
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Fig. 6. Bulk modulus for the chosen metals –comparison between experimental values (red) and free electrons theory values (blue), 

obtained from eq. (11a). 
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Fig. 7. Bulk modulus for the chosen metals – comparison between experimental values (red) and H-F theory values (green), obtained 

from eq. (24). 
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Fig. 8. Bulk modulus for the metals where the difference between experimental values (red) and free electrons theory values (blue) – 

obtained from eq. (11a), is significant. 



Janusz Chrzanowski,  Bohdan Bieg  
 

General and Professional Education  3/2018 23

Ag Au Ba Cu Dy Er Fe Hf Hg Lu Mg Mn Mo Pa Pt Ta Tb Th U
0

100

200

300

400

B
 [G

P
a

]

metal
 

Fig. 9. Bulk modulus for metals where the difference between experimental values (red) and  H-F theory values (green) – obtained 
from eq. (24) is significant. 

 
 
Conclusions 
 
The best correlation between theory and experimental 
results is observed for the alkali metals, obviously 
assuming absolute values for H-F theory. There are 
metals for which both theories give comparable results to 
the experiment (the differences do not exceed several 
percent), but in principle they are different metals for 
each theory, see Fig.5 and Fig.6. There are also metals 
for which the difference between theory and experiment 
is significant especially for noble metals where even the 
order of magnitude does not agree (Fig.7 and Fig.8). In 
this situation it is difficult to say that one of the theories 
gives a correct picture of the reality. It may seem strange 

that more correct results are obtained for a much simpler 
theory of free electrons, in which we do not formally 
take into account interactions. This means that the 
interaction, and especially the exchange energy (Eq. 19), 
may not be as significant as the H-F theory suggests. 
All this puts into question the sense of the use of 
quantum models for practical calculations. If generally 
accepted course book models lead to substantial 
disproportions with the experiment the more difficult it 
becomes to present them in a reasonable way to students 
who are unfamiliar with complex physical formalism. 
This means that the current state of knowledge allows 
only for a qualitative analysis and this in turn 
significantly reduces the possibility of practical use.  
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