
Marek Żukowicz, Dawid Warchoł

General and Professional Education
1/2015 pp. 57-62
ISSN 2084-1469

TESTING EDUCATION: TEST CASE PRIORITIZATION USING

MATRICES

Marek Żukowicz
Rzeszów University of Technology
Faculty of Electrical and Computer Engineering
Department of Computer and Control Engineering
ul. W. Pola 2, 35-959 Rzeszów
e-mail: bobmarek@o2.pl
Dawid Warchoł
Rzeszów University of Technology
Faculty of Electrical and Computer Engineering
Department of Computer and Control Engineering
ul. W. Pola 2, 35-959 Rzeszów
e-mail: dawwar@kia.prz.edu.pl

Abstract: In this paper we describe the problem of assigning priorities to test cases before the
beginning of software testing. This problem occurs when testers do not have enough time to test every
function. Therefore, it must be specified which test cases are the most important, which are medium
important, and which can be omitted incurring little risk of the production environment failure. We
describe a method of test case prioritization using a table called the report matrix. Such matrices can
be used to introduce some quality and functionality measures of a version of software as well as to
allow the comparison between different versions.

Keywords: test case prioritization, report matrix, quality measures.

Introduction to test case prioritization
problem

Designing of tests is an activity that defines
what functionality has to be tested and how
to perform the tests. The process of test
designing usually includes the aims and scope
of the tests. These aims consist of strategic and
test objectives as well as other designing
criteria or acceptance criteria specified by the
stakeholders. In IT companies there is often not
enough time to perform every test that describes
functionality of the tested system. The lack of
time may be the result of adding new
requirements to iterations or changing them,
which sometimes takes place within companies.
There exist systems tightly functionally
integrated with various applications. The
automation of such systems' tests is practically
impossible or very hard and expensive which
makes it unprofitable. Software developers
often have to decide which test cases should be

performed first in order to determine whether a
given version of software is stable enough to
reach the client with the right quality. Failure to
deliver the software in time may cause the loss
of customer's trust or expose a company to
additional costs what stakeholders do not want
to happen.
In practice it is sometimes hard to prioritize the
particular test cases based only on the
specification. Moreover, the priorities are not
always optimally set which may lead to release
of an unstable version of software. Such a
situation is unwanted by every person
associated with the IT project. The assignment
of priorities to particular test cases with the
appropriate levels can be done after the test
conditions are specified and there is available
information sufficient to enable the creation of
low, medium, and high level test cases.
The purpose of this paper is to present the
problem of assigning priorities to test cases, as
well as to propose a quality measure of
functionality based on previous tests. We

General and Professional Education 1/2015 57

http://genproedu.com/

TESTING EDUCATION: TEST CASE PRIORITIZATION USING MATRICES

propose using matrices and the properties of
particular rows for test case prioritization
describing functions of the testing system in the
case of long projects in which the iterative-
incremental model of software development is
used. Assigning priorities to test cases is a
problem for which there exists no specific
strategy. We present a method that can
significantly contribute to solving the problem
and lead to introducing new measures of
software quality.

Related work

The problem of test case prioritization is the
subject which attracts the interest of scientists.
Several interesting solutions of the problem can
be found in literature. The work [1] is an
introduction to the regression tests problems.
The authors explain why the test case
prioritization should be of interest to testers and
scientists. It is one of the first works that
address this issue. The authors of [2] present an
approach to separate functionality tests to
white-box (full access to the source code),
black-box (no access to the source code), and
gray-box (limited access to the source code)
tests. They describe an algorithm that
maximizes coverage of the tested program
functionality and minimizes the number of tests
by measures called distances. These measures
specify the extent to which tests meet the given
requirements. In [4] the heuristic algorithm
named "aggregate-strength prioritization"
strategy (ASPS) is presented. It assigns
priorities to test cases in the context of negative
tests whose aim is to look for defects causing
the failure of a tested system. The authors of [6]
describe the prioritization issue as a set in
which permutations are defined. The objective
function, mentioned in this work, is defined in
such a way that it can be used in the algorithm
solving the problem of ordering the test cases.
The method is also oriented to look for defects
in tested software.
The work [3] is the review paper. It contains
diagrams and charts showing the comparison of
the selected algorithms related to our subject. In
the paper [5] authors mathematically prove that
there cannot exist one good strategy of solving
every optimization problems of a particular
type. Therefore, it is reasonable to search for
new algorithms and strategies of solving
problems such as testing optimization, an
example of which can be test case

prioritization. This represents the main
motivation of our paper. The approach
described in the following sections can be
applied to white-box or black-box functional
testing. It is not oriented to looking for defects,
but to confirm the quality of tested software and
to compare the quality of different versions of
software.

Iterative-incremental model of software
development

The iterative-incremental model assumes that in
particular time another versions of software
with new functions are created. In this method,
the changes in requirements are possible
between the increments of functions. The
particular processes accompanying the software
development can be modified and work
schedule can be updated. During each
increment a programmer can use the knowledge
acquired in previous increments. This
knowledge comes both from the process of
software development, and from the possibility
of working on a particular finite part of the
system.

From the software development
methodology point of view, the incremental
method begins with the specification of
requirements and the creation of initial general
project of the entire system called the base
project. Then, a subset of functions is chosen
with respect to given criteria. The next step,
according to the cascade model, is the creation
of detailed project, based on which the part of
the system with the chosen functionality is later
developed. After the tests are performed, the
created part of the system can be given to the
client.

Regression testing

A software regression means the loss of some
features in a new version of software that
usually results in an error message, a logical
error or the lack of action. Regressions are
caused by changing some parts of the program
code. As a consequence of these changes some
functions may stop working. To find such
errors, the regression testing may be used. It is
a type of software testing able to determine the
correctness of functions that were present in
previous versions of a program. Regression
testing reveals defects caused accidentally

General and Professional Education 1/2015 58

Marek Żukowicz, Dawid Warchoł

General and Professional Education 1/2015 59

during the process of program optimization.
Specifying which test cases should be
performed first in regression testing, can
significantly increase the likelihood that a
potential user will get a working stable version
of software in relatively short time.

Applying matrices to solve the problem
of test case prioritization

Formalization of the problem

Suppose that we have a problem of assigning
priorities to test cases. Therefore, some symbols
must be introduced in order to formalize the
problem. Let be the set of all
test cases which describes the functional tests in
a particular version of system. We define the
mapping:

 mttT ,...,1 

 hmlTg ,,:   (1)
which assigns priorities to test cases in a way
that h, m, and l are high, medium, and low
priorities, respectively. Practically, in systems
there always exist crucial functions that has to
work correctly and thus, the set T must be
divided in the following way:

 2121 , TTTTT Φ (2)
Where T1 denotes the test cases with the high
priority which cannot be changed; T2 defines
the test cases whose priorities can change
depending on the given criteria. Let

 be the set of the test reports.

For the report Rj we define the mapping
 which describes the acceptance of

a test case: 1 - a test passes (acceptance
conditions are satisfied), 0 - a test fails,
(acceptance conditions are not satisfied). If the
amount of test cases with the fixed high priority
is equal to s in a particular iteration (e.g., one
month) of software development, then the set

},...,{ 1RR 

: Trj

m

pR

 1,0

 s t,...,tT 12  and only these cases might
have their priorities changed. There is,
however, a possibility that some test from T1
will be moved to T2 for some reason, e.g.,
changing the work system or organization
system in a company to which the software is
dedicated. Therefore, the set T1 should also be

considered in the process of assigning priorities.
According to the iterative development model,
new functions are sometimes added to software.
These functions may not be present in some
number of first reports. For this reason, we
conventionally assume that the priorities are
assigned to the test cases which are present in at
least three reports. The report matrix

][)(ijaTA  is defined, where:

).(jtjij ra  (3)

For each row of the matrix A the function
 ,1,0: Tf  ,... 3,2,1: Tc is defined,

where:




p

tcpj j
c

)(1

itf)(
i

ij

t

a

)(
 (4)

while specify the number of reports containing
the test case ti and p is the number of all reports.
The function c is necessary because a test case
can appear in a third, fourth or later report or it
may be omitted in some report for any reason.
This can happen, e.g., when a new client does
not require some functionality and there is not
enough time to test every function. The
function f should be interpreted as a measure of
quality of the tested functionality that entails
the risk of system failure. Such a failure may be
caused by an error in a particular function
present in a new version of software.

An example of applying report matrices to
assign priorities to test cases

Assume that we have to perform the tests of
software after its 10 iterations of development
and 30 already performed tests, from which 10
has the high priority. Assume also that the
execution time of all tests is relatively long, and
therefore, the order of their execution will
depend on their priorities. A report from the
previous tests can be seen in table 1. Rows 1 to
10 describe the test cases with fixed high
priority (from the set Ti).
For each row of table 1, the value of f is
calculated based on the equation (4). The
results are presented in table 2 and table 3.

TESTING EDUCATION: TEST CASE PRIORITIZATION USING MATRICES

Table 1. Report matrix from the 10 previous iterations of software development

Number of
test case /
Number of

report

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

1 1 1 1 0 1 1 0 1 0 1
2 1 1 1 1 1 1 1 1 1 1
3 0 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 0 1 1 1 0
5 1 0 1 1 1 1 0 0 1 1
6 1 1 1 0 0 0 0 1 1 1
7 1 1 1 1 1 0 1 1 1 1
8 1 1 1 1 1 1 1 1 0 0
9 1 1 1 1 0 1 0 1 1 1

10 1 0 0 1 1 1 1 1 1 1
11 0 1 1 1 1 1 1 1 1 1
12 0 1 1 1 0 1 1 1 1 0
13 1 1 1 0 1 1 0 0 1 1
14 1 0 0 0 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1
16 1 0 0 1 1 1 0 1 1 1
17 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 0 1 0 1 1
19 1 1 1 1 0 0 1 1 1 1
20 X 0 1 1 1 1 1 1 1 1
21 X 0 0 1 1 1 1 0 1 1
22 X 1 0 1 1 1 1 1 1 1
23 X 1 1 1 1 1 1 1 1 1
24 X 0 1 0 1 1 1 1 1 1
25 X 1 1 0 1 1 1 1 1 1
26 X 1 1 0 1 1 0 1 1 0
27 X X 1 1 1 1 1 1 1 1
28 X X 1 1 1 1 0 1 1 1
29 X X X 1 0 1 0 1 1 1
30 X X X 1 1 1 0 0 0 1

Table 2. Values of function f for the test cases (1)

Number of test case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Value of f 0,7 1 0,9 0,8 0,7 0,6 0,9 0,8 0,8 0,8 0,9 0,7 0,7 0,7 1

Table 3. Values of function f for the test cases (2)

Number of
test case

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Value of f 0,7 1 0,8 0,8 0,89 0,67 0,89 1 0,78 0,89 0,67 1 0,88 0,71 0,57

Having a table with calculated values of f from
the previous reports, we shall adopt the criteria
of function g according to which the priorities
will be assigned to test cases. Such activity is
usually performed by test director, manager or
analyst (in large companies). An example
definition of g is presented in equation 5:














 0,7)(,

(0,7;0,9))(,

 0,9)(,

)(

i

i

i

i
tfh

tfm

tfl

tg (5)

Thus, after the 10 iterations, the test cases will
have the priorities as shown in table 4 and table

General and Professional Education 1/2015 60

Marek Żukowicz, Dawid Warchoł

5. According to function g, the order of testing
in the next iteration will be as follows:
1) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 21,
26, 30 - high priority;

2) 18, 19, 20, 22, 24, 25, 28, 29 - medium
priority;
3) 11, 15, 17, 23, 27 - low priority.

Table 2. Designated priorities of the test cases (1)

Number of test case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Priority h l H m h h l m m m l h h h l

Table 3. Designated priorities of the test cases (2)

Number of
test case

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Priority H l m m m h m l m m h l m m h

Having the matrix A(T) with all test cases, we
can proceed in the same way. Ranges,
according to which function g assigns the
priorities, can be chosen freely. They may
depend on the testers' desired degree of
software quality assurance. The question begs -
what should we do if the time intended for
testing is limited whilst there are many test
cases with high and medium priority? Such
decision belongs to the person responsible for
the quality assurance. The ranges may be
differently defined so that the assignment of
high and medium priorities will not be
rigorously conditioned. There is also a
possibility that only the new functions will be
tested and only the regression tests for high
priority cases will be performed. In practice, it
is very rare that the majority of the test cases do
not satisfy the acceptance criteria in every
iteration. However, if this occurs, one should
consider the cessation of maintenance of such
defective system.

Introduction of software quality and
functionality measures using report
matrices

Software quality measures and comparing of
tests from previous iterations are of great
importance since they allow to decide whether
the software development or the tests are going
in the right direction. Applying the matrix A(T)
may introduce some software quality measures
allowing to compare different versions of
program. Considering the entire matrix, the

quality measure can be
defined by the following equation:

]1,0[)(:))((TATAm

))((

)(1 1

kkk

p
i

m
j ij

TAmp

ak k



   
))((TAm  (6)

where:
pk - number of reports after the iteration k;
mk - number of test cases after the
iteration k;

))((kTA - number of A(T) elements
with X value after the iteration k;








0

1
)(aij




}.,0{ if ,

 1 if ,

Xa

a

ij

ij

Assume that we want to compare the software
versions between the seventh and the eight
iteration using table 1 and equation (6). For this
purpose we have to calculate m7(A(T)) and
m8(A(T)):

%66,66
30

20
))((7 TAm ,

%66,86
30

26
))((8 TAm .

After the eight iteration, the quality of the
version of software was greater by 20%.
Based on the above equations it is easy to
introduce the way of comparing particular
functions and areas. One should confine to test
cases associated with the area that has to be
compared. Introducing the denotation

]1,0[) T(:))((ASTAmk we can define the

measure of area after the iteration k:

General and Professional Education 1/2015 61

TESTING EDUCATION: TEST CASE PRIORITIZATION USING MATRICES

))((

)(
)(

1

k

h
j kj

k STAh

a
STm



  

 (7)

where:
ST - subset of test cases associated with

particular function/area;
h - number of elements of the S.

One can easily notice that equation (7) is the
generalization of equation (6). Comparing the
subsequent versions of software in the context
of the particular areas, there is also a possibility
to collate the developers' skills (in larger
projects), which can be useful for deciding
about the training or the reorganization of
programmers' work.

Conclusion

The purpose of the paper was to provide
decision support about an order of performing
test cases. Every field of industry is usually
associated with some software. In the real-time
systems testing takes about 80% of the time
spent on a project. In the case of long-term
projects, there is a need to manage testing
during the software maintenance and versioning
phase. There is often not enough time to
perform every test. The authors propose a

method for testing optimization using matrices
as well as software quality and functionality
measures. The advantages of using matrices for
test case prioritization are as follows:
1. The method is easy to understand and
implement, e.g., as a computer program or a
spreadsheet.
2. Tests from different iterations can be
compared with each other.
3. There is a possibility to compare different
functions and, based on this comparison, to
observe the performance of a particular
function against others.
4. One can introduce the quality measure of a
single function and its changes in the
application lifecycle.
5. Particular versions of a tested application can
be compared as a whole to versions from other
iterations.
Nowadays, software testing is as much
important as programming and the information
technology is present in almost every area of
life and industry. It is, therefore, worth writing
about testing as well as increasing knowledge in
this subject, not only from the technical, but
also from the educational side by proposing
new solutions for testing-related issues.

References

1. Agrawal H., Horgan J.R., London S., Wong W.E., A Study of Effective Regression Testing in
Practice, IEEE International Symposium on Software Reliability Engineering, 1997.
2. Blostein D., Hassan A. E., Hemmati H., Thomas S.W., Static test case prioritization using topic
models, Springer Science+Buisnes Media, LLC 2012.
3. Catal C., Mishra D., Test Case prioritization: a systematic mapping study, Springer
Science+Buisnes Media, LLC 2012.
4. Chan A.T.S., Chen J., Lu Y., Huang R., Towey D., Aggregate-strength interaction test suite
prioritization, The Journal and Systems and Software 99, 2015.
5. Ho Y., Pepyne D. L., Simple Explantation of No Free Lunch Theorem of Optimization, IEEE,
Conference on Decision and Control, Orlando, Florida USA, 2001, IPCSIT vol.14 (2011) © (2011)
IACSIT Press, Singapore 225.
6. Sun F., Yan L., Regression testing Prioritization Based on model Checking for Safety-Crucial
Embedded Systems, 2013 Fourth International Conference on Digital Manufacturing & Automation.

General and Professional Education 1/2015 62

